45 research outputs found

    Quantifying Cognitive Decrements Caused by Cranial Radiotherapy

    Get PDF
    With the exception of survival, cognitive impairment stemming from the clinical management of cancer is a major factor dictating therapeutic outcome. For many patients afflicted with CNS and non-CNS malignancies, radiotherapy and chemotherapy offer the best options for disease control. These treatments however come at a cost, and nearly all cancer survivors (~11 million in the US alone as of 2006) incur some risk for developing cognitive dysfunction, with the most severe cases found in patients subjected to cranial radiotherapy (~200,000/yr) for the control of primary and metastatic brain tumors1. Particularly problematic are pediatric cases, whose long-term survival plagued with marked cognitive decrements results in significant socioeconomic burdens2. To date, there are still no satisfactory solutions to this significant clinical problem

    Lack of Pathology in a Triple Transgenic Mouse Model of Alzheimer’s Disease after Overexpression of the Anti-Apoptotic Protein Bcl-2

    Get PDF
    Alzheimer’s disease (AD) is characterized by the accumulation of plaques containing ß-amyloid (Aß) and neurofibrillary tangles (NFTs) consisting of modified tau. Although Aß deposition is thought to precede the formation of NFTs in AD, the molecular steps connecting these two pathologies is not known. Previous studies have suggested that caspase activation plays an important role in promoting the pathology associated with AD. To further understand the contribution of caspases in disease progression, a triple transgenic Alzheimer’s mouse model overexpressing the anti-apoptotic protein Bcl-2 was generated. Here we show that overexpression of Bcl-2 limited caspase-9 activation and reduced the caspase cleavage of tau. Moreover, overexpression of Bcl-2 attenuated the processing of APP (amyloid precursor protein) and tau and reduced the number of NFTs and extracellular deposits of Aß associated with these animals. In addition, overexpression of Bcl-2 in 3xTg-AD mice improved place recognition memory. These findings suggest that the activation of apoptotic pathways maybe an early event in AD and contributes to the pathological processes that promote the disease mechanisms underlying AD

    Age and distraction are determinants of performance on a novel visual search task in aged Beagle dogs

    Get PDF
    Aging has been shown to disrupt performance on tasks that require intact visual search and discrimination abilities in human studies. The goal of the present study was to determine if canines show age-related decline in their ability to perform a novel simultaneous visual search task. Three groups of canines were included: a young group (N = 10; 3 to 4.5 years), an old group (N = 10; 8 to 9.5 years), and a senior group (N = 8; 11 to 15.3 years). Subjects were first tested for their ability to learn a simple two-choice discrimination task, followed by the visual search task. Attentional demands in the task were manipulated by varying the number of distracter items; dogs received an equal number of trials with either zero, one, two, or three distracters. Performance on the two-choice discrimination task varied with age, with senior canines making significantly more errors than the young. Performance accuracy on the visual search task also varied with age; senior animals were significantly impaired compared to both the young and old, and old canines were intermediate in performance between young and senior. Accuracy decreased significantly with added distracters in all age groups. These results suggest that aging impairs the ability of canines to discriminate between task-relevant and -irrelevant stimuli. This is likely to be derived from impairments in cognitive domains such as visual memory and learning and selective attention

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Causal effect of plasminogen activator inhibitor type 1 on coronary heart disease

    Get PDF
    Background--Plasminogen activator inhibitor type 1 (PAI-1) plays an essential role in the fibrinolysis system and thrombosis. Population studies have reported that blood PAI-1 levels are associated with increased risk of coronary heart disease (CHD). However, it is unclear whether the association reflects a causal influence of PAI-1 on CHD risk. Methods and Results--To evaluate the association between PAI-1 and CHD, we applied a 3-step strategy. First, we investigated the observational association between PAI-1 and CHD incidence using a systematic review based on a literature search for PAI-1 and CHD studies. Second, we explored the causal association between PAI-1 and CHD using a Mendelian randomization approach using summary statistics from large genome-wide association studies. Finally, we explored the causal effect of PAI-1 on cardiovascular risk factors including metabolic and subclinical atherosclerosis measures. In the systematic meta-analysis, the highest quantile of blood PAI-1 level was associated with higher CHD risk comparing with the lowest quantile (odds ratio=2.17; 95% CI: 1.53, 3.07) in an age- and sex-adjusted model. The effect size was reduced in studies using a multivariable-adjusted model (odds ratio=1.46; 95% CI: 1.13, 1.88). The Mendelian randomization analyses suggested a causal effect of increased PAI-1 level on CHD risk (odds ratio=1.22 per unit increase of log-transformed PAI-1; 95% CI: 1.01, 1.47). In addition, we also detected a causal effect of PAI-1 on elevating blood glucose and high-density lipoprotein cholesterol. Conclusions--Our study indicates a causal effect of elevated PAI-1 level on CHD risk, which may be mediated by glucose dysfunction

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Long-term cognitive effects of human stem cell transplantation in the irradiated brain.

    No full text
    PurposeRadiotherapy remains a primary treatment modality for the majority of central nervous system tumors, but frequently leads to debilitating cognitive dysfunction. Given the absence of satisfactory solutions to this serious problem, we have used human stem cell therapies to ameliorate radiation-induced cognitive impairment. Here, past studies have been extended to determine whether engrafted cells provide even longer-term benefits to cognition.Materials and methodsAthymic nude rats were cranially irradiated (10 Gy) and subjected to intrahippocampal transplantation surgery 2 days later. Human embryonic stem cells (hESC) or human neural stem cells (hNSC) were transplanted, and animals were subjected to cognitive testing on a novel place recognition task 8 months later.ResultsGrafting of hNSC was found to provide long lasting cognitive benefits over an 8-month post-irradiation interval. At this protracted time, hNSC grafting improved behavioral performance on a novel place recognition task compared to irradiated animals not receiving stem cells. Engrafted hESC previously shown to be beneficial following a similar task, 1 and 4 months after irradiation, were not found to provide cognitive benefits at 8 months.ConclusionsOur findings suggest that hNSC transplantation promotes the long-term recovery of the irradiated brain, where intrahippocampal stem cell grafting helps to preserve cognitive function
    corecore